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Abstract 

Often in mathematics, it is useful to summarize a multivariate phenomenon with 
a single number. In fact, the determinant - which is denoted by det - is one of the 
simplest cases and many of its properties are very well-known. For instance, the 
determinant is a multiplicative function, i.e., ( ) ,,,detdetdet nMBABAAB ∈⋅=  

and it is a multilinear function, but it is not, in general, an additive function, i.e., 
( ) ≠+ BAdet  .detdet BA +   

Another interesting scalar function in the Matrix Analysis is the characteristic 
polynomial. In fact, given a square matrix A, the coefficients of its characteristic 
polynomial ( ) ( )AtItA −=χ det:  are, up to a sign, the elementary symmetric 
functions associated with the eigenvalues of A. 

In the present paper, we present new expressions related to the elementary 
symmetric functions of sum of matrices. 

The main motivation of this manuscript is try to find new properties to probe the 
following conjecture. 

Bessis-Moussa-Villani conjecture: [2, 4] 

The polynomial ( ) (( ) ) [ ],: ttBATrtp m R∈+=  has only nonnegative coefficients 

whenever rMBA ∈,  are positive semidefinite matrices. 
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Moreover, some numerical evidences and the Newton-Girard formulas suggested 
to us to consider a more general conjecture that will be considered in a further 
manuscript. 

Positivity Conjecture : 

The polynomial (( ) ) [ ],ttBAS m
k R∈+  has only nonnegative coefficients whenever 

rMBA ∈,  are positive semidefinite matrices for every .,,1,0 rk K=  

It is clear that the BMV conjecture is a particular case of the positivity conjecture 
for ,1=k  since .1 TrS ≡  

1. Introduction 

Denote by ,, nmM  the set of nm ×  matrices over an arbitrary field F  

and by nM  the set ., nnM  Determinants are mathematical objects that 

are very useful in the matrix analysis. 

In fact, the determinant of a matrix ,nMA ∈  can be presented in two 

important, apparently different, but equivalent ways. 

The first one is the Laplace Expansion: 

If [ ]jiaA ,=  and assuming that the determinant is defined over 

,1−nM  then 

( ) ( ) ( ) ( ) ( ),det1det1det ,,
1

,,
1

jiji
ji

n

i
jiji

ji
n

j
AaAaA +

=

+

=

−=−= ∑∑  (1) 

where 1, −∈ nji MA  denotes the submatrix of A resulting from the 

deletion of row i and column j. 

The second way is the Alternating Sum: 

( ) ( ) ( ) ( ) ( ) ,sgndet ,2,21,1 nn
P

aaaA
n

σσσ
∈σ

σ= ∑ L  (2) 

where nP  is the set of all permutations of { },,,2,1 nK  and ( )σsgn  

denotes the sign of the permutation .σ  
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Remark 1.1. Notice that with these definitions it is clear that the 
determinant is a multilinear function. 

In the present paper, we present a closed expression for 

( ) ,,,,,det 2121 nNN MAAAAAA ∈+++ KL  

where ,1+≥ nN  in terms of the sum of another determinants involving 
the matrices .,,, 21 NAAA K  

Definition 1.2. Let ., nmMA ∈  For any index sets ,, βα  with ⊆α  

{ } { },,,1,,,1 nm KK ⊆β  and ,β=α  we denote the submatrix that lies 

in the rows of A indexed by α  and the columns indexed by β  as ( )., βαA  

For example 







11712
2-0901 { } { }( ) [ ].913,1,1 =  

On the other hand and taking into account some properties of the 
determinant it is well-known that the characteristic polynomial of a given 
square matrix A can be written as 

( ) ( ) ( ) ( ) ( ),1det 1
1 AStAStAtIt n

nnn
A −++−=−=χ − L  

where nMI ∈  is the identity, and ( )ASk  is the elementary symmetric 

function associated to the matrix .,,2,1, nkA K=  

In fact, by the second way as we have defined the determinant, i.e., 
the alternating sum, it is straightforward that 

( ) ( )( ) .,,2,1,,det nkAAS
k

k K=αα= ∑
=α

 (3) 

In connection with the elementary symmetric functions, we present new 
equalities related to these functions, giving explicit expressions for 2S  
( )BA +  and ( ),3 BAS +  for any ., nMBA ∈  

The structure of this paper is the following: In Section 2, we present 
some results related with the determinant of sum of matrices, whose proof 
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is given in Appendix. In Section 3, we obtain the values of ( )BAS +2  and 
( )BAS +3  by using the definition of the elementary symmetric functions 

of a matrix, In Section 4, we prove the same identities and also we obtain 
( )BAS +4  by using the Newton-Girard identities, where A and B are two 

generic n-by-n matrices.  

2. The Determinant of a Sum of Matrices 

Let N be a positive integer and let us consider the N-tuple of n-by-n 
matrices 

( ).,,,: 21 NAAAS L=  

We define ( )S∑  as the set of all possible formal sums of matrices of S, 

where each ,,,1, NiAi K=  appears at most once. 

Remark 2.1. Note that WLG we can add the null matrix, 0, in ( ).S∑  

The following result will be useful for further results 

Theorem 2.2. Given nMA ∈  and an integer N, with .1+≥ nN  For 

any N-tuple ( ) ,,,1,,,,, 21 NiMAAAAS niN KL =∈=  the following 

relation holds: 

( )
( )

,0det1
0

=












+− ∑∑∑

Ω∈∈∑Ω=
=Ω

i
AS

k
N

k
AA

i
k

 (4) 

understanding that k=Ω  means that Ω  is a formal sum with k 

summands, and that Ω∈iA  means that iA  is a summand in .Ω  

Remark 2.3. The identity (4) can be rewritten as 

( ) .0det1
1

1

0,,

1

1

=












+− ∑∑

=

++

=
jj

N

j

xx

xx
AxAN

N

L

K

 (5) 

Chapman proves in [7] the case 0=A  of this. But his argument works as 
well in this generalized form; the determinant is a polynomial of degree 
less than N in the variables Nxx ,,1 K  and this alternating sum must 
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vanish as seen by applying to any monomial of degree less than N. 
Alternatively (5) follows by subtracting the 1+N  case of Chapmans 
identity from the N case. 

For instance, if we set 0=A  in (4) and ,,,, 34321 MAAAA ∈  i.e., 
,4=N  then 

( ) ( ) ( )4213214321 detdetdet AAAAAAAAAA +++++=+++  

( ) ( )432431 detdet AAAAAA ++++++  

( ) ( ) ( )413121 detdetdet AAAAAA +−+−+−  

( ) ( ) ( )434232 detdetdet AAAAAA +−+−+−  

( ) ( ) ( ) ( ).detdetdetdet 4321 AAAA ++++  

This result has very interesting consequences. 

Corollary 2.4. Under the conditions of Theorem 2.2. For any index 
sets { }n,,2,1, K⊆βα  of size ,1, +τ≥τ N  the following relation holds: 

( )
( )

( ) ( ) .0,,det1
0

=












βα+βα− ∑∑∑

Ω∈∈∑Ω=
=Ω

i
AS

k
N

k
AA

i
k

 (6) 

The proof follows from Theorem 2.2 replacing A by ( )βα,A  and taking 

into account that ( ) τ∈βα MAi ,  and .1+τ≥N  

On the other hand, if we combine the above result and (3) we obtain 
that: 

Corollary 2.5. Under the conditions of Theorem 2.2, for any 
nonnegative integer ,1, +τ≥τ N  

( )
( )

,01
0

=












+− ∑∑∑

Ω∈
τ

∈∑Ω=
=Ω

i
AS

k
N

k
AAS

i
k

 (7) 

where ( )CSτ  is the -τ th elementary symmetric function of the matrix C. 
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The proof, again, is straightforward taking into account (3) and that 
.1+τ≥N  

The following identity is useful to compute -τ th elementary symmetric 
function of any number of matrices .1+τ≥N  

Corollary 2.6. Under the conditions of Theorem 2.2. For any 
nonnegative integers ,1, +τ≥τ N  the following identity fulfills 

( ) ( )
( )

,
1

1
1

1

0
21 
























−−

−−+
−=+++ ∑∑∑

Ω∈
τ

∈∑Ω

−

=
τ

−=Ω

i
iS

j
k

j
N AS

kN

kNj
AAAS

jk

L  (8) 

The proof is elementary and we leave it for the reader. 

In fact, Theorem 2.2 is optimal with respect to the range of N, i.e., for 
every positive integer n, it is possible to find n-tuples of nM  such that the 
equality (4), given in Theorem 2.2, fails. For instance, taking 

( ) ,,,,,2,1,diag 1 R∈=== xxeAnieA ii K  

where { }neee ,,, 21 K  is the canonical basis of ,nR  it is straightforward to 
check that 

( )
( )

( ) ( ) .011det1
0

≠−+−=












+− ∑∑∑

Ω∈∈∑Ω=
=Ω

xxAA n
i

AS

k
n

k i
k

 

3. Obtaining ( )BAS +2  and ( )BAS +3  

So the next logical step is to get closed expressions for the -τ th 
elementary symmetric functions of a sum of N matrices, with .1 τ≤≤ N  
To do that we will use the Newton-Girard formulas for the elementary 
symmetric functions (see, e.g., [5, Subsection 10.12]) and the definition of 
such functions (3). 

Remark 3.1. Note that if A is n-by-n, then ( ) ( ),det ASA n=  so it is 
enough to obtain those identities for the elementary symmetric functions 
and then apply these to the determinant. 
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Lemma 3.2. For any ,, 21 nMAA ∈  we get 

( ) ( ) ( ) ( ) ( ) ( ),21121112212212 AASASASASASAAS −++=+  (9) 

( ) ( ) ( ) ( ) ( )2112112313213 AASAASASASAAS +−+=+  

( ) ( ) ( ) ( ) ( )2
2
1112212211 AASASASASAS +++   

( ).2
211 AAS+  (10) 

( ) ( ) ( ) ( ) ( )32113323133213 AAASASASASAAAS ++−++=++  

( ) ( ) ( ( )22113231211 ASASAAAAAAS +++×  

( )) ( ) ( ( ) ( )) ( )3132122132 ASASASASAS ++++   

( ( ) ( )) ( ) ( )2
2112

2
112212 AASAASASAS +++×  

( ) ( ) ( ) ( )2
3213

2
21

2
3113

2
11 AASAASAASAAS ++++  

( ) ( ).23113211 AAASAAAS ++  (11) 

Proof. Let nMAA ∈21,  be two matrices with spectra ( ) =σ 1A  
{ }nλλ ,,1 K  and ( ) { },,,12 nA µµ=σ K  respectively. The Newton-Girard 
formula gives 

( ) ( ),2 121
2
1

2

1
ASASi

n

i
−=λ∑

=

 

where ( ) ( ).111 ATrAS ≡  WLG we can assume 1A  diagonal, then by 
definition of 2S  (see (3)) we get 

( ) ( ( ) ) ( )22,2
11

212 2 ASbATrAAS jjj

n

j
ji

nji
+−λ+λλ=+ ∑∑

=≤<≤

 

( ) ( ) ( )2121
2

1

2

1
222

1
2
1 AATrATrATrj

n

j
j

n

j
−+λ−













λ= ∑∑

==
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( ) ( ( )) ( ( )) ( )( )12
2

1
2

122 22
1

2
1 ASATrATrAS −−=+  

( ) ( ) ( ) ( )222121 22 ASAATrATrATr +−+  

( ) ( ) ( ) ( ) ( ).21212212 AATrATrATrASAS −++=  

And for ( ),213 AAS +  if 1A  is a diagonal matrix, by definition of 3S  (see 
(3)), it is straightforward to get 

( ) ( )( )jjiiji
nji

kji
nkji

bbATrAAS ,,2
11

213 −−λλ+λλλ=+ ∑∑
≤<≤≤<<≤

 

(( ) ) ( ).23,22
1

ASAS jjj

n

j
+λ+ ∑

=

 

Taking into account that in this case the Newton-Girard formula produces 
the identity 

( ) ( ) ( ) ( ),33 1312111
3
1

3

1
ASASASASi

n

i
+−=λ∑

=

 

and the expansion of ( ) ,3cba ++  we obtain 

( ) (( ( )) ( ) ( ) ( ))1
2
1

3
1

3
1213 326

1 ATrATrATrATrAAS −+=+  

( ) ( ) ( ) ( ) ( )2
2
1211212 AATrAATrATrATrAS +−+  

(( ) ) ( ).23,22
1

ASAS jjj

n

j
+λ+ ∑

=

 

But we can assume 2A  is a diagonal matrix and say 

(( ) ) ( ) ( ) .,,2,1,2
222,22 njATrASAS jjjj K=µ+µ−=  

So, 

( ) ( ) ( ) ( ) ( ) ( )21121213213 AATrATrATrASASAAS −+=+  
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( ) ( ) ( ) ( ) ( )2212212
2
1 3 ATrAATrASATrAATr −++  

( ) ( ),23
2
21 ASAATr ++  

and hence both relations, (9) and (10), hold. Moreover (11) is a direct 
consequence of (10).                                                                                          

4. Other Way to Obtain ( ) ( )BASBAS ++ 32 ,  and ( )BAS +4  

We will start probing ( )BAS +2  using the Newton-Girard identities: 

( ) (( ) ) ( ) ( ) ( ) ( )BSASASBASBASBAS 2
1

2
1

2
1

2
1

2
122 −+−=+−+=+−  

( ) ( ) ( ) ( ) ( ) ( )BSASABSBSASBS 22111
2

1 2222 −−=+−+  

( ) ( ) ( ).22 111 ABSBSAS +−  

We will apply an analogous way to obtain ( ):3 BAS +  

( ) (( ) ) (( ) ) ( ) ( ) ( )BASBASBASBASBASBAS +++++−+=+ 211
2

1
3

133  

( ) ( ) ( ) ( ) ( )2
1

3
1

2
1

2
1

3
1 33 ASBSABSBASAS −+++=  

( ) ( ) ( ) ( ) ( ) ( ) ( )BSABSASABSBSASAS 11111
2

11 22 −−−×  

( ) ( ) ( ) ( ) ( ) ( ).2 211
2

11
2

1 BASBASBSBSASBS +++−−  

If now we expand ( ),2 BAS +  after some simplifications it is clear we get 
the desired identity for ( ).3 BAS +  

4.1. Obtaining ( )BAS +4  

As the above examples, the Newton-Girard formula gives 

( ) (( ) ) (( ) ) ( ) (( ) )2
11

3
1

4
144 BASBASBASBASBAS ++++−+=+−  

( ) ( ) ( ).312 BASBASBAS ++−+×  

Taking into account the properties of the trace, we get 
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( ) ( ) ( ) ( ) (( ) ) ( )3
1

2
1

22
1

3
1

4
14 42444 ABSABSBASBASASBAS ++++=+−  

( ) ( ) ( ) ( ) ( ) ( ) ( )ASBASBSASASASBS 1
2

11
3

11
3

1
4

1 3−−−+  

( ) ( ) ( ) ( ) ( ) ( )BSABSASABSBSBAS 1
2

11
2

11
2

1 333 −−−  

( ) ( ) ( ) ( ) ( ( ) ( )ABSASBSBSASBS 1
2

11
3

11
3

1 2++−−  

( )) ( ( ) ( ) ( ) ( ) ( ))ABSBSASBSASBS 11122
2

1 −+++  

( ( )) ( ( ) ( ) ( ) ( ) ( ) ( )ASBSBSASBSASBAS 2121331 ++++−  

( ) ( ) ( ) ( ) ( ) ( )).1111
2

1
2

1 BSABSASABSABSBAS −−++  

Applying the same technique applied before, we get 

( ) ( ) ( )BSASBAS 444 444 −−=+−  

( ) ( ) (( ) ) ( )3
1

2
1

22
1

3
1 4244 ABSABSBASBAS +++  

( ) ( ) ( ) ( ) ( ) ( )BSBASASBASBSAS 1
2

11
2

11
3

1 33 −−−  

( ) ( ) ( ) ( ) ( ) ( )ASBSBSABSASABS 1
3

11
2

11
2

1 33 −−−  

( )( ( ) ( ) ( ) ( )) ( )( ( )ASABSABSBSASBSAS 211112
2

1 2+−++  

( ) ( ) ( ) ( )) ( ) ( ( )ASBSABSBSASBS 2
2

11112 +−++  

( ) ( ) ( )) ( ) ( ( ) ( ) ( )BSASBSASABSBSAS 2131111 +−−+  

( ) ( ) ( ) ( )2
1

2
121 ABSBASASBS +++  

( ) ( ) ( ) ( )) ( )( ( )ASBSBSABSASABS 311111 −−−  

( ) ( ) ( ) ( ) ( ) ( )2
1

2
12121 ABSBASASBSBSAS ++++  

( ) ( ) ( ) ( )).1111 BSABSASABS −−  

After some simplifications applying the Newton-Girard formulas, we get 

( ) ( ) ( ) ( ) ( ) (( ) )2
1

22
1

3
1414 244444 ABSBASBASBSASBAS −−−+=+  
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( ) ( ) ( ) ( ) ( ) ( )2
11

2
11

2
1

3
1 3334 ABSBSBASASBASABS +++−  

( ) ( ) ( ) ( ) ( ( ) ( )BSASABSBSABSAS 1111
2

11 23 −+×  

( )) ( ) ( ( ) ( ) ( ) ( ))BSABSABSBASASABS 11
2

1
2

111 +−++  

( )( ( ) ( ) ( ) ( ))ASABSABSBASBS 11
2

1
2

11 +−+  

( ) ( ) ( ) ( ) ( ) ( )BSASASBSBSAS 221313 444 +++  

( ) ( ) ( ) ( ).44 1212 ABSBSABSAS −−  

Applying the Newton-Girard formulas and after some simplifications, we 
get 

( ) ( ) ( ) ( ) ( ) ( ) ( )BASABSBASBASBSASBAS 2
1

3
1

22
1

3
1444 +−−−+=+  

( ) ( ) ( ) ( ) ( ) ( ) ( )BSABSASABSBSBASAS 1
2

11
2

11
2

11 +++×  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ASASBSBSASBSASABS 21313111 +++−  

( ) ( ) ( ) ( ) ( ) ( ).212122 ABSABSBSABSASBS +−−×  

5. Conclusions and Outlook 

We have constructed the 2nd, the 3rd and the 4th elementary 
symmetric functions of a sum of two matrices but, of course, is simple to 
see that is possible to compute the -τ th elementary symmetric function of 
a sum of N-matrices, τ≤≤ N1  by using the Newton-Girard formulas or 
by using the same technique used in Lemma 3.2 which, by the way, is too 
much complicated. 

Of course, one of the goals in further papers is to find a closed 
expression in the general case which for the moment is not clear although 
we believe the Theory of partition of integers is involved. 

In fact, by using the generalized Waring’s formula [6], for any A is n-
by-n matrix, nk ≤≤0  and any nonnegative integer m, we get 
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( ) ( ) ( ) ( ),1 1 AeAAS
kn

nkm
k λλ

=λ

+ ∑−=  

where the coefficients λA  are given by 

( )
( )

( ) ( ) ( )

( )

( )

( )

( )

( ) ( )
,

,,!

1

11
121

,2,1















λλ

λ

λ
π

−= ∏
∏

∑∑
π

=
=

π−λ

λλλ=π
λ

=λ
λ=π

=π
imi

i

i

l

li
k

i

ll

k mm

l

l
n

m
A

niki
l

kk
KULUU

K

 

and ( ) ( )( ) ( )( ) .21
21 LASASAe mm λλ

λ =  

Remark 5.1. A partition is a finite sequence ( )rλλλ ,,, 21 K  of 
positive integers in decreasing order, where ( )λl  denotes the length of the 
partition, and ( )λkm  denotes the number of parts of λ  equal to k. 

µλ U  is the partition whose parts are those of λ  and .µ  

Taking into account this identity, we believe that we can obtain an 
analogous expression for the -τ th elementary symmetric function of a sum 
of matrices. In fact, we expect one expression in which appears the 
elementary symmetric functions on words of the letters NAA ,,,A 21 K  
as one could see in Subsection 4.1 for the case ( ).214 AAS +  
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Appendix 

Proof of Theorem 2.2 

We will prove by induction on n: 

• If 1=n  the matrices are scalars so, for every k, 

( )
( )

( )
( )i

AS
iA

S
AAAA

i
k

i

k

∑∑∑
Ω∈∈∑Ω

Ω∈
∈∑Ω

+=∑+

=Ω=Ω

det   
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( ),
1
1

21 NAAA
k
N

A
k
N

+++







−
−

+





= L  

and hence (4) holds for 1=n  and .2≥N  

• If we assume that the result holds for n, let us going to prove the 
identity (4) for .1+n  Taking the Laplace expansion through the first row, 
we get 

( )
( )

( ) ( )
( )
{ ( ) j

n

jS

k
N

k
i

AS

k
N

k
k

i
k

AA +
+

=∈∑Ω=Ω∈∈∑Ω=

−−=+− ∑∑∑∑∑∑
=Ω=Ω

1
1

100
11det1  

( ( ) ( )) ( ( ) )}.det,1,1 ,1,1 ji
A

ji
A

AAjAjA
ii
∑∑

Ω∈Ω∈

++×  

By induction, since for every ( )jAnj ,1,,,2,1 K=  is fixed and does not 
depend on k nor ,Ω  we get that the above expression is equal to 

( ) ( )
( )

( )) ( ( ) )ji
A

ji
AS

k
N

k

j
n

j
AAjA

ii
k

,1,1
0

1
1

1
det,111 ∑∑∑∑∑

Ω∈Ω∈∈∑Ω=

+
+

=

+−−

=Ω

 

( ) ( ) ( )
( )

( ( ) ).det,111 ,1,1
10

1
1

1
ji

A
j

S

N
k

N

k

j
n

j
AAjA

i

k
A

∑∑∑∑∑
Ω∈∈∑Ω

λ
=λ=

+
+

=

+−−=

=Ω
Ω∈λ

 

Now, if we assume that any set with less than one element has 
determinant equal to zero, we get 

( ) ( ) ( )
( { })

( ( ) ( ) )ji
A

jj
AS

N
k

N

k

j
n

j
AAAjA

i
k

,1
~

,1,1
\~10

1
1

1
det,111

1~

∑∑∑∑∑
Ω∈

λ
∈∑Ω

λ
=λ=

+
+

=

++−−

−=Ω
λ

( ) ( ) ( )
( { })

( ( ) ( ) ).det1,11 ,1
~

,1,1
\~

1

01

1
1

1
~

ji
A

jj
AS

k
N

k

N
j

n

j
AAAjA

i
k

∑∑∑∑∑
Ω∈

λ
∈∑Ω

−

=
λ

=λ

+
+

=

++−−=

=Ω
λ
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By induction, since for every λ  and j, the matrices ( ) 1,1,1 , −λ ∈ njj MAA  

are fixed, thus ( ) 1,1,1 −λ ∈+= njj MAAA  is also fixed. Thus we get 

( ) ( ) .00,11
1

1
1

1
=⋅− λ

=λ

+
+

=
∑∑ jA
N

j
n

j
 

Moreover, since ,2+≥ nN  then .11 +≥− nN  Hence, the relation  
holds.                                                                                                                 
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